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EXECUTIVE SUMMARY 

 

Traffic incidents cause approximately 50 percent of freeway congestion in metropolitan 

areas, resulting in extra travel time and fuel cost. Quantifying incident-induced delay 

(IID) will help people better understand the real costs of incidents, maximize the benefit-

to-cost-ratio of investment in incident remedy actions, and facilitate the development of 

active traffic management and integrated corridor management strategies. 

This study continued a previous research project conducted by the Smart 

Transportation Applications and Research Laboratory (STAR Lab) at the University of 

Washington. A new approach for IID estimation based on traffic sensor measurements 

was developed in this study. The main advantage of this new approach is that it relies 

only on volume data, available from almost all types of traffic sensors, for IID estimation. 

Variables such as speed or travel time, required by most existing methods but not directly 

measurable from most existing sensors, are not needed for IID estimates. Therefore, the 

new approach is easy to apply and suitable for large-scale applications.  

This new approach is based on a modified deterministic queuing diagram and 

regression techniques for short-term traffic flow forecasting. The modified deterministic 

queuing diagram utilizes the cumulative traffic volume sequence collected by the loop 

detectors upstream and downstream of an incident location for total delay estimates. 

Since recurrent delay at the incident location must be eliminated to result in IID, 

regression techniques are applied to predict the unobservable downstream volumes under 

the incident-free scenario. By doing this, the time offset estimation required by previous 
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methods is no longer needed, and this definitely enables IID to be calculated for locations 

with only volume measurements.  

Two regression techniques, lagged regression and ridge regression, were 

investigated in this study for downstream volume sequence prediction. Their prediction 

accuracies were evaluated and compared to help determine the best prediction approach. 

Ridge regression was chosen for algorithm implementation because it consistently 

produced better prediction results when compared with observations from traffic 

surveillance videos. A number of upstream/downstream models were calibrated for 

application under different scenarios, featured by time of day, number of lanes, route, and 

direction. The downstream volumes predicted by the ridge regression model were then 

combined with observed downstream volumes in the modified queuing diagram for IID 

estimation. 

To verify the accuracy of the algorithm, IIDs estimated by the proposed approach 

were compared with ground-truth IIDs extracted from Washington State Department of 

Transportation (WSDOT) surveillance video cameras at two study sites, one on I-5 and 

the other on SR 520. The relative errors associated with the proposed approach were 1.4 

percent and -5.6 percent for the I-5 and SR 520 cases, respectively, indicating that the 

new approach is able to produce fairly accurate IID estimates. 

The proposed algorithm was implemented in Java to automate all its 

computational steps. This application was loaded with all the incidents recorded by the 

2009 Washington Incident Tracking System (WITS) database and with loop detector-

measured vehicle volumes collected by WSDOT. Incident data were preprocessed to 

eliminate obvious data errors. After data cleansing, 2,676 incidents remained in the study 
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network and were processed for IID estimates. This demonstration showed that the 

proposed approach was easy to use, as the computational process took only a very short 

moment to complete. The proposed algorithm is also flexible in terms of input data 

aggregation level and time period for the IID analysis. A regional map-based online 

platform was also developed to help users visualize all the incidents in the 2009 WITS 

database. For any selected time period in 2009, users can conveniently query for 

incidents and their associated IIDs with this online application.  

On the basis of the estimated IIDs, statistical analyses on frequencies of incident 

occurrence, incident duration, and IID were conducted in this study. The principal 

findings of this research are summarized as follows: 

• By using the method developed in this study, users can calculate IID with 

good accuracy for a large-scale freeway network equipped with traffic 

counters.   

• Analysis on 2009 WITS data found that WSDOT responded incidents have 

longer durations on weekend days and in nights due to the differences in IR 

resource allocations and response procedures. In general, weekend days and 

nighttime have lower travel demands and hence lower congestion probability. 

For some specific corridors, however, weekend travel demand may not be 

significantly different from weekdays and hence may need similar IR response 

resource and effectiveness to weekdays. A case study on I-5 incidents 

revealed that weekend incidents have longer average IIDs than weekday 

incidents of the same type. This implies that more IR resources may be needed 

for busy corridors during weekend days. 
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• Shoulder/median closure corresponds to a much lower median IID compared 

to other types of lane closure.  

• Traffic accidents have significantly longer incident duration than other types 

of incidents. Longer incident duration tends to result in longer IID. More 

effective response to traffic accidents will definitely be helpful in IID 

reduction and congestion mitigation.  

This research also revealed the following future research directions and potential 

applications: 

• Accurately predicting the downstream volume sequence under the incident-

free scenario is critical for quantifying IID. Since geometric factors, in 

addition to volume levels, are highly influential to traffic movements, 

prediction models that take location-specific variables into account are likely 

to yield better results and should be investigated in future research.   

• High quality input data are key to accurate IID estimates. Some of existing 

incident data and loop detector data are suffering from incomplete or incorrect 

records (e.g. nonexistent incident location or unrealistic volume). Those errors 

must be corrected for more accurate IID estimates using the proposed 

algorithm.  This implies the need of methods for improving incident and loop 

detector data.   

• Ramp volumes should be considered in IID estimation. However, this study 

was not able to consider ramp volumes because the milepost information for 

on- and off-ramps was missing. Future studies should add milepost the 

xiv 



locations of ramps to the roadway network database so that ramp impacts can 

be considered in IID calculations.  

• The estimated IID can be used to compute the cost induced by IIDs. These 

data can be used to assess the effectiveness of an IR program. They can also 

be applied to optimize IR resource allocations.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Research Background 

Aside from their negative impacts on traffic safety, freeway incidents have been identified as one 

of the major causes for congestion. According to a Federal Highway Administration (FHWA) 

research report (Cambridge Systematics, Inc., 2005), approximately 50 percent of congestion on 

freeways is non-recurrent congestion caused by incidents (25 percent), work zones (10 percent), 

and bad weather (15 percent). The situation is even more severe in urban areas. Approximately 

one-half to two-thirds of the total travel delay in large metropolitan areas is incident-related 

(Center for Urban Transportation Research, 2005). Since congestion mitigation and safety 

enhancement are among the main goals of most transportation agencies, a number of state (and 

local) departments of transportation have invested in incident response (IR) programs in a variety 

of forms. 

In Washington state, the Washington State Department of Transportation (WSDOT) 

established its Incident Response Program in collaboration with the Washington State Patrol 

(WSP) and the Washington State Association of Fire Chiefs (WSAFC), a group called the 

Washington Traffic Incident Management Coalition (WaTIMCo). Besides prioritizing responder 

and motorist safety, one of WaTIMCo’s goals also involves congestion mitigation when 

incidents occur. Estimation of IID is highly desirable for the following reasons: 

• Measurement of IID is important in assessing the effectiveness of congestion 

countermeasures. 

• IID estimates help engineers understand the impacts of various types of incidents 

under various traffic and roadway conditions. 
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• Accurate IID estimates can help in identifying appropriate decisions regarding IR so 

that limited monetary and labor resources can be allocated to maximize its benefit-to-

cost ratio (BCR). 

• IID estimates are key components of incident cost calculations and are essential for 

the development of active traffic management and integrated corridor management 

strategies. 

However, it is not an easy task to quantify IID because existing traffic sensors cannot 

directly measure IID, and algorithms are needed to estimate IID by using available traffic sensor 

measurements. Therefore, IID estimation has become a hot research field. Most research efforts 

have been based on either Deterministic Queuing Theory (DQT) or shock wave analysis. The 

former calculates IID by using a queuing diagram formed by cumulative vehicle arrival and 

departure curves. The area enclosed by the two curves represents the total delay. The latter 

involves several attempts to apply the methods of kinematic waves to explain the characteristics 

of traffic flow, which lead to the development and application of shock wave analysis for 

estimating IID. 

In Washington state, Hallenbeck et al. (2003) developed a loop-occupancy-based 

algorithm to identify incident occurrence and to estimate the impacts of incidents on freeways. 

Although it was easy to apply, this algorithm suffered from false alarms in terms of incident 

detection because loop-measured lane occupancy is not always a good indicator of actual traffic 

conditions. Also, IID estimated with this algorithm could be subject to another source of error 

because of the use of point-sensor measured speeds for sectional travel time calculations. In 

2008, Wang et al. (2008) applied a DQT-based approach for estimating IID. This approach 

improved the accuracy of IID estimates by using traffic data (e.g., vehicle count and loop 

2 



occupancy) and a Dynamic Volume-Based Background Traffic Profile (BTP) instead of a fixed 

occupancy background profile to quantify IID. Use of this approach significantly improved the 

incident detection rate in comparison to results from the loop-occupancy-based method. The 

accuracy of the DQT-based approach was evaluated by using microscopic traffic simulation 

models. However, the performance of this DQT-based approach was not stable. Further 

investigation found that IID estimated from this approach was sensitive to the travel time 

estimation from the upstream loop station to the incident location.  

To improve IID results, the estimation accuracy of the space-mean speed or travel time 

from the upstream loop station to the incident location had to be enhanced. This would be fairly 

difficult, given the sporadic deployment of detectors and sensor measurement constraints. Hence, 

the first challenge to improving IID estimation using DQT methods was that accurate speed or 

travel time data would be difficult to obtain. Not many traffic sensors deployed on the existing 

freeway system are capable of measuring traffic speed or travel time. For example, most existing 

traffic detectors on Washington freeways are single loops. Although Athol’s method (Athol, 

1965) can be used to estimate traffic speed from single-loop output, the accuracy may not be 

great when a significant number of long vehicles are present (Wang and Nihan, 2000). 

Furthermore, capturing each vehicle’s speed requires loop event data (high resolution loop status 

data), which are available only in traffic controllers unless special data collection devices, such 

as the Advanced Loop Event Data Analyzer (ALEDA) (Cheevarunothai et al., 2006), are used to 

record the data.  

The second challenge to using the DQT-based approaches for quantifying IID was to 

separate recurrent traffic delay from the total delay under incident scenarios. Wang et al. (2008) 

applied a BTP matching approach to find a traffic volume series in an incident-free scenario to 
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match the current volume series under incident impact. Once an acceptable match had been 

found, its volume series at the downstream loop was applied to calculate recurrent delay. The 

difference between total delay and recurrent delay was IID. However, not all traffic arrival series 

have an incident-free matching series in the historical database. Also, the matching process is 

computationally expensive. Therefore, the BTP matching approach may not always be capable of 

quantifying the delay introduced by an incident. A more robust IID estimation approach was 

desired. As a continuation of an earlier study (referred to as the Phase I study in this report) by 

Wang et al. (2008), this study (or Phase II) sought to develop a new IID estimation approach to 

overcome the two challenges described above.  

 

1.2 Research Objectives 

The objectives of this study included the following: 

• Improve the IID estimation algorithm and enhance its applicability by limiting the 

input to traffic volume only. Since volume can be directly measured by single loop 

detectors, the most common type of traffic sensors in the existing roadway network, 

an IID estimation algorithm requiring only volume input is highly desirable.  

• Implement the new IID estimation approach in a computer program for automatically 

quantifying IIDs on a regional freeway network. 

• Expand the database developed in Phase I to support IID analysis on a larger freeway 

network, i.e., the Puget Sound regional freeway network. 

• Present the incident information together with IID estimates on the Digital Roadway 

Interactive Visualization and Evaluation Network (DRIVE Net), a regional map-
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based online data sharing, modeling, and analysis platform developed by the Smart 

Transportation Applications and Research Laboratory (STAR Lab). 
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CHAPTER 2 STATE OF THE ART 

 

IID refers to the extra travel time, in addition to the travel time of an incident-free scenario, 

which all incident-impacted vehicles take to complete a certain length of trip. This implies that 

IID quantification is essentially a travel time estimation problem under incident and incident-free 

conditions. Some studies, e.g., Skabardonis et al. (1996), directly used probe vehicles to measure 

travel time. However, since the number of probe vehicles on a roadway network is fairly small, 

travel time obtained this way is subject to a relatively high uncertainty. Calculating travel time 

with the speed data from dual-loop detectors is another common method in practice (Skabardonis 

et al., 2003). However, the application of this method is constrained by the fact that dual loop 

sensors are not widely available. Another issue with the direct travel time estimation method is 

that it does not provide a travel time for the incident-free scenario that corresponds to an incident 

case. Obtaining the travel time for the incident-free scenario still requires quantitative models. 

Many characteristics of traffic flow are similar to those of fluid flow. Therefore, some 

researchers have attempted to apply the methods of kinematic waves to explain characteristics of 

traffic flow. These attempts have led to the development and application of shock wave analysis 

to estimate IID. Shock wave analysis was first introduced when Lighthill and Whitham (1955) 

showed how traffic flow can be characterized through the analogy of fluid dynamics. At about 

the same time, Richards (1956) independently developed a simple model of traffic flow in which 

individual vehicles were replaced with a continuous fluid density. Therefore, the first shock-

wave-based model has been called the Lighthill, Whitham, and Richards model, or the LWR 

model. Al-Deek et al. (1995) proposed a method based on shock wave analysis for calculating 

total IID by using loop data and incident data. Mongeot and Lesort (2000) also modeled traffic 

flow dynamics with the impacts of incidents. In their model, shock waves, perturbation clearing 
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time, and maximum queue length were considered in formulating the model to capture incident-

induced flow perturbation variations through space and time. While providing well-defined 

theoretical estimations, these approaches required intensive data support for implementation, 

which usually cannot be satisfied by the current traffic data collection infrastructure. 

A widely used approach is Deterministic Queuing Theory (DQT). DQT-based methods 

calculate travel delay as the area enclosed by the arrival and departure curves. However, the 

calculated delay includes the portion associated with recurrent congestion. To quantify IID, 

recurrent delay must be separated from total delay (Cheevarunothai et al., 2010). Morales (1987) 

developed an interactive spreadsheet tool in which DQT was applied to the computation of travel 

delay caused by freeway incidents. Lindley et al. (1987) applied a similar approach on a national 

basis and implemented the approach in the FREWAY model they developed. Ten years later, 

Sullivan (1997) developed the IMPACT model on the basis of the FREWAY model. The 

incident delay module in IMPACT was still based on the queuing diagram’s arrival and 

departure curves. Fu and Rilett (1997) considered incident duration uncertainty with a 

probabilistic distribution and combined it with DQT in their model. This enabled their model to 

estimate each individual vehicle’s delay on the basis of its arrival time at the incident site and the 

distribution of the incident duration. In another study, Fu and Hellinga (2002) applied fuzzy set 

theory to account for the stochastic characteristics of existing queue condition, future traffic 

arrival, lane closure, and the vehicle’s arrival time, but the essence of their model was still DQT. 

Li et al. (2006) also combined stochastic incident duration modeling and reduced capacity 

modeling within the traditional DQT framework. 

Traditional DQT methods can be directly applied to simulation data for IID quantification 

(Fu and Rilett, 1997; Fu and Hellinga, 2002; Li et al., 2006). However, when applied to actual 
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loop detector data, this method must be properly modified to address the physical distance 

between the upstream and downstream loop stations to avoid bias. This is because a key 

assumption in DQT is that arrivals and departures occur at the same spatial location (zero vehicle 

length), whereas in the real world, arrival and departure flows are observed by upstream and 

downstream loop stations, respectively. In delay calculation applications, the key to addressing 

this issue is to virtually move the upstream and downstream flow curves along the timeline (the 

horizontal axis on queuing diagram) to the incident occurrence time, so that the zero vehicle 

length assumption is not violated. Some researchers (such as Rakha and Zhang, 2005) proposed 

using speed data to calculate the travel times from the upstream loop location to the incident 

location and from the incident location to the downstream loop location. However, accurate 

speed data are usually unavailable because of either an absence of dual loop stations or poor-

quality occupancy measurements resulting from single loops with incorrect sensitivities 

(Cheevarunothai et al., 2006; Wang et al., 2009). Even if quality measurements of point speed 

are available, the accuracy of travel time estimates may still vary depending on how vehicle 

speeds change between the upstream and downstream loop stations. Therefore, a method that 

considers the actual layout of loop detectors on freeways and requires only volume inputs is 

highly desirable for IID estimates. 

As mentioned earlier, IID refers to the travel time that the incident scenario adds to travel 

time of the incident-free scenario. Because there is no detected data for the incident-free 

scenario, travel time estimation for the incident-free scenario is essential. To address this issue, 

Hallenbeck et al. (2003) proposed a Background Traffic Profile (BTP) method for the incident-

free scenario. In 2008, Wang et al. developed Dynamic Volume-Based (DVB) extraction of the 

BTP and used it for the Phase I study funded by WSDOT. Hallenbeck’s and Wang’s studies 
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provided a good method for IID estimation. However, their methods still faced a challenge in 

matching the background traffic. To solve this problem, this research used the observed upstream 

flow curve to predict the downstream flow curve for the incident-free scenario. The feasibility of 

this approach has been demonstrated in several previous short-term traffic flow forecasting 

studies, e.g., Hobeika and Kim (1994) and Abdulhai, et al. (1999). 

9 



CHAPTER 3 DATA COLLECTION 

 

3.1 Data for IID Estimates 

To quantify IID, three types of data are required: 

• Incident data provide detailed information on each incident, including incident location, 

start time, and end time.  

• Traffic volume data, collected by loop detectors, are required to characterize traffic 

conditions along segments at times with incidents as well as without incidents.  

• Traffic surveillance video data of the roadway segments being analyzed are also needed 

for the purpose of algorithm verification. 

 

3.1.1 Incident Data 

Freeway incident data are available from three sources in Washington State: the WSDOT IR 

teams, the Washington State Patrol (WSP), and the WSDOT Transportation Systems 

Management Center (TSMC). Data collected by the WSDOT IR teams are stored in the 

Washington Incident Tracking System (WITS). This data set contains only information 

pertaining to the incidents for which WSDOT IR teams were present. Washington State Patrol 

data are stored in its Computer Aided Dispatch (CAD) database. This database contains 

information on all incidents reported to and handled by the WSP. The TSMC maintains its own 

incident log file with incidents observed by traffic surveillance video cameras.  

When the researchers determined which set of incident data would best serve the 

purposes of this study, three pieces of information were considered critical: incident start time, 

end time, and location. While both the CAD database and the WITS database contain these data 

items, the WITS database is preferable because of its higher data quality. Although the CAD data 

10 



set has more data items than the WITS data set, it frequently misses critical pieces of information 

such as the beginning and clear times. Furthermore, the CAD data set is more difficult to obtain, 

as it includes drivers’ private data.  

Incidents recorded in the 2009 WITS database were therefore used in this study. State 

Route ID, direction, and mile post jointly define an incident’s location. Notification time records 

the time when an incident was reported to the IR program. Since most incidents were reported 

through mobile phones nowadays, notification time should be very close to the start time of an 

incident in metropolitan areas. Arrival time stores the time when an IR truck arrived at the 

incident location. All lanes open time is the time when all lanes became open to traffic. Clear 

time is the time when the incident had been fully cleared and the IR teams left the incident scene. 

In this study, an incident’s duration was defined as the time when traffic is under the impact of 

the incident. In the 2009 WITS data, this is labeled as Clearance Time. This can also be easily 

checked by periodically calculating IID with the proposed approach. When IID stops growing, 

impacts from the incident have ended. 

 

3.1.2  Loop Detector Data 

Loop detector data required for this study were acquired from WSDOT and archived on a data 

server hosted by the STAR Lab at the University of Washington. Required loop detector data 

primarily consist of single loop measurements, i.e., traffic volume and lane occupancy, 

aggregated every 20 seconds for all the major routes in the central Puget Sound region, including 

I-5, I-405, I-90, and SR 520. Loop detector stations are spaced approximately every half a mile 

in the central Puget Sound region. 

Although loop detectors are located at a relatively high frequency along freeways, the 

quality of the data from many of these loop detectors renders them unusable. One major issue of 
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loop data is the inaccuracy of occupancy indication caused by wrong sensitivity levels (Wang et 

al., 2009). Another issue that degrades loop data quality is missing data, due to bad 

communication or loop failure.  

 

3.1.3  Video Data 

Video data were used in this study to validate the IID algorithm. The STAR Lab has access to all 

the 400+ WSDOT traffic surveillance video cameras deployed along the freeway corridors. 

These cameras cover I-5, I-405, I-90, SR 167, SR 520, and others. To capture ground-truth travel 

delay data, two cameras are needed, one at each end of the link being monitored. To facilitate a 

comparison with loop data-based IID estimates, these cameras’ fields of view are best centered at 

the loop stations bounding the freeway link. However, very few freeway links have both 

surveillance video cameras and inductance loops located at approximately the same places. 

The STAR Lab’s fiber connection can support two live video streams simultaneously, 

which satisfied the video data collection need for this project. Two video streams, one at each 

end of a freeway link, were recorded simultaneously to collect vehicle arrival and departure data 

for the link. Because the research team could not predict when an incident would occur, the 

video streams were recorded for long periods to ensure the capture of traffic volumes under 

incident impacts.  

 

3.2 Site Selection 

To validate the accuracy of the IID algorithm proposed in this research, test sites for delay 

quantification and video verification were selected. The selection of sites was not easy because 

multiple factors had to be properly considered to ensure the quality of data and analysis results. 

The criteria used for site selection were as follows: 
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1) No entry or exit points – The selected freeway link should not have any on- or off- 

ramps between the upstream and downstream loop stations because there are no sufficient 

cameras to capturing all the entering and exiting traffic.  

2) Suitable video surveillance – Not only did video cameras have to be present at these 

locations, but their viewing ranges had to cover all possible vehicle paths. No vehicles 

could pass the camera without being seen, or the counts would be inaccurate. The video 

cameras also had to be of high enough quality to allow for visual identification and 

matching of vehicles at both ends of a test segment. If unique vehicle properties could not 

be identified because of poor visual quality, the camera could not be used. Cameras along 

a specific segment also had to be spaced far enough apart to allow vehicle queuing to 

form but not extend beyond the visual limits of the upstream camera. 

3) High accident probability – To validate the new IID estimation approach, vehicles 

entering and exiting the segment during an incident had to be captured. Incident data 

have shown that the number of incidents between different locations varies greatly. Many 

incidents occur at some locations while nearly none occurs at others. To increase the 

possibility of capturing video of an incident, locations with a greater tendency for 

incidents were preferable over those with fewer incidents. 

4) Quality loop detector data – To mitigate the impacts of data errors on IID estimates, 

loop detectors at the test sites had to be in good working condition. The quality of loop 

detector measurements had to pass a quality check before a segment could be chosen as a 

study site.  

Four locations were chosen as the study sites through the selection process. These locations were 

as follows: 
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1) I-90 Bridge westbound, from milepost (MP) 4.53 to 5.45 

2) I-405, near Everett Mall, in both directions, from MP 189.98 to 191.88 

3) I-5 northbound, near Boeing Field, from MP 158.45 to 160.64 

4) SR 520 Bridge westbound, from MP 1.58 to 4.1. 
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CHAPTER 4 STATISTICAL ANALYSIS OF INCIDENTS 

 

4.1 Occurrence Frequency 

This section discusses an investigation of the statistical patterns of incident occurrence frequency 

and incident duration based on the 2009 WITS data. Statistical analysis of incidents can provide 

not only a better quantitative description of incidents for traffic operators but also help for them 

to develop countermeasures against traffic incidents and incident-induced congestion. 

Table 4-1 and Figure 4-1 present the statistical results for the monthly frequency of incidents 

on Washington state freeways in 2009. We can see that fewer incidents occurred in winter than 

in summer, but the difference was not significant. The three months with the highest incident 

frequencies were June, July and August, while those with the lowest frequency were January, 

February, and November. 

 
Table 4-1. Incident Frequency by Month 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Incident 

Frequency 3,104 3,164 3,693 3,897 3,724 4,100 4,574 3,917 3,450 3,481 3,148 3,534 

Total 43,786 
 
 

 
Figure 4-1. Number of Incidents by Month 
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Table 4-2 and Figure 4-2 show the number of incidents by the day of week. In Table 4-2, it 

can easily be observed that the incident frequency on weekdays was two to three times higher 

than that on weekends. This may have been due to the volume difference, as a similar trend was 

observed between weekday and weekend volumes. Also, IR teams are deployed more lightly on 

weekends, so some incidents might have gone unrecorded since WSDOT IR personnel were not 

present at them. 

 
Table 4-2. Number of Incidents by Day of Week 

Day of Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
Incident Frequency 7,135 7,817 7,708 7,676 8,069 2,764 2,617 

Daily Average Weekdays:  7,681 Weekends:  1,191 
 

 
Figure 4-2. Number of Incidents by Day of Week 
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The number of incidents by time of day is summarized in Table 4-3 and Figure 4-3. The 

whole time period for one day was divided into four periods: 6:00 to 9:00  AM, 9:00  AM to 4:00  

PM, 4:00  to 7:00  PM, and 7:00  PM to 6:00  AM of the next day. The statistical results show 

that the second time period had the most incidents, with over 56 percent of all incidents 

occurring in this time period. The incident frequencies per hour for each period were 2,651, 

3,533, 3,146, and 151. The incident frequency for the midnight phase was much lower than those 
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of the other three phases, likely due to the low traffic volume as well as the low priority for the 

WSDOT to apply congestion management countermeasures such as IR when traffic volume is 

low. Also since WSDOT’s IR resource is more likely deployed in the high traffic volume time 

periods, some incidents might have gone unrecorded in the WITS database, because WSDOT IR 

personnel were not present at them during the nighttime. 

 
Table 4-3. Number of Incidents by Time of Day 

Quarter 06:00-09:00 09:00-16:00 16:00-19:00 19:00-6:00 
Q1 1,975 5,663 1,944 379 
Q2 2,108 6,614 2,535 464 
Q3 2,044 6,613 2,801 483 
Q4 1,826 5,843 2,157 336 

Total 7,953 
(18.16%) 

24,733 
(56.49%) 

9,437 
(21.55%) 

1,663 
(2.77%) 

Incidents / hr 2,651 3,533 3,146 151 
 

 
Figure 4-3. Number of Incidents by Time of Day 
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According to the results of incident classification by route, we can see that the five corridors 

with the highest occurrence frequency statewide were I-5, I-90, I-405, SR 167, and SR 520, in 

descending order. The rate of incidents was also calculated as the number of incidents per mile. 

Incidents that occurred in the Puget Sound region are summarized in a similar way to reflect a 
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comparison with statewide data. The numbers of incidents and incident rates for these main 

corridors are listed in Table 4-4 and Figure 4-4. It is especially noteworthy that the I-5 corridor in 

the Puget Sound region should be the focus of incident management, given that incidents in this 

section accounted for more than 70 percent of the whole corridor, whereas in terms of mileage 

this section was only 40 percent of the full length. Also note that since Table 4-4 is based on the 

WITS data, it could be skewed by the deployment of WSDOT’s IR team on each main corridor. 

Due to the fact that WSDOT’s IR teams are not evenly deployed on all the corridors, incidents 

occurring on the corridor with less IR coverage might not be recorded and thus not summarized 

by Table 4-4. 

 
Table 4-4. Number of WSDOT Responded Incidents and Incident Rate by Route 

Route I-5 I-90 I-405 SR 167 SR 520 

Statewide 
Incident Frequency 23,009 5,823 5,297 2,072 1,787 

Length/mi 276.56 297.88 30.32 27.28 12.83 
Incidents per Mile 83 20 175 76 139 

Puget Sound 
Region 

Incident Frequency 16512 1416 5297 2072 1787 
Length/mi 108 19.41 30.32 27.28 12.83 

Incidents per Mile 153 73 175 76 139 
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Figure 4-4. Incident Rate by Route 
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On the basis of primary lane closure, incidents were divided into eight categories: total 

closure (TC), all travel lanes (ATL), multiple lanes (ML), a single general purpose lane (SL), the 

HOV lane (HOV), a shoulder/median closure (SM), and other kinds of incidents (Other). Table 

4-5 and Figure 4-5 indicate the frequency of incidents by primary lane closure. The top three 

categories were shoulder/median, single lane, and multiple lanes. Among them, shoulder/median 

was identified as the category with the highest incident frequency, accounting for more than 75 

percent of the total closures. Note that shoulder/median closures have less influence on main lane 

traffic flows, so they cause lower delays than other closure types. Meanwhile, this finding also 

provides a statistical piece of evidence for the importance of road shoulder and median barrier 

configurations. 

Table 4-5. Number of Incidents by Primary Lane Closure 

Quarter Total 
Closure 

All Travel 
Lanes 

Multiple 
Lanes 

Single 
Lane HOV Lane Shoulder/ 

Median Other 

Q1 55 19 291 1,822 198 7,535 41
Q2 45 30 332 2,085 198 8,990 41
Q3 43 34 329 2,071 179 9,231 54
Q4 31 27 272 1,843 159 7,772 59

Total 174 
(0.40%) 

110 
(0.25%) 

1,224 
(2.80%) 

7,821 
(17.86%) 

734 
(1.67%) 

33,528 
(76.57%) 

195 
(0.45%) 
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Figure 4-5. Number of Incidents by Primary Lane Closure 
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In WITS, all incidents can be classified into eight categories by their nature: fatality collision 

(FC), injury collision (IC), non-injury collision (NIC), abandoned vehicle (AV), disabled vehicle 

(DV), debris, police activity (PA), and other kind of incidents (Other). From Table 4-6 and 

Figure 4-6, it is apparent that disabled vehicles, abandoned vehicles, and debris were the top 

incident categories. As the most frequent incident type, disabled vehicles accounted for more 

than 50 percent of the total in 2009, while the other two top categories jointly accounted for more 

than 25 percent. This fact indicates that WSDOT may consider maintaining and further 

strengthening the vehicle towing capability to facilitate the incident clearance process. 

Table 4-6. Number of Incidents by Incident Type 

Quarter Fatality 
Collision 

Injury 
Collision 

Non-Injury 
Collision 

Abandoned 
Vehicle 

Disabled 
Vehicle Debris Police 

Activity Other 

Q1 27 279 877 1,626 5,287 1,082 16 767
Q2 18 358 919 1,718 6,286 1,528 19 875
Q3 23 339 869 1,706 6,602 1,557 17 828
Q4 27 324 1,059 1,611 5,414 983 22 723

Total 95 
(0.22%) 

1,300 
(2.97%) 

3,724 
(8.51%) 

6,661 
(15.21%) 

23,589 
(53.87%) 

5,150 
(11.76%) 

74 
(0.17%) 

3,193 
(7.29%) 
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Figure 4-6. Number of Incidents by Incident Type 
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Actions taken for emergency management include nine categories: advised the WSP 

(AWSP), changed a flat tire (CFT), minor repair (MR), provided fuel (PF), pushed, removed 

debris (RD), towed, provided traffic control (TC), and other kinds of action (Other). Because the 

action taken for several incidents was not provided on the incident reports, we summarize these 

incidents under Unknown in Table 4-7 and Figure 4-7. The most common action was advised 

WSP, which covered more than 60 percent of all the actions taken. 

 
Table 4-7. Number of Incidents by Action Taken 

Quarter Advised 
WSP 

Changed 
Flat Tire 

Minor 
Repair 

Provided 
Fuel 

Pushed Removed 
Debris 

Towed Traffic 
Control 

Other Unknown 

Q1 6,216 279 167 247 238 580 62 1,066 1,056 50
Q2 7,386 369 164 316 221 817 54 1,070 1,272 52
Q3 7,570 350 198 320 177 853 66 988 1,390 29
Q4 6,463 276 142 332 190 598 56 887 1,192 27

Total 27,635 
(63.11%) 

1,274 
(2.91%) 

671 
(1.53%) 

1,215 
(2.77%) 

826 
(1.89%) 

2,848 
(6.50%) 

238 
(0.54%) 

4,011 
(9.16%) 

4,910 
(11.21%) 

158 
(0.36%) 

Note: IR teams can perform multiple actions at one incident, so total actions taken will be  more than total incidents. 
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Figure 4-7. Number of Incidents by Action Taken 
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4.2  Incident Duration 

In 2009 WITS data, four timestamps are recorded for a typical incident: notification time (when 

the incident was notified to the IR team), arrival time (when the IR team arrived at the incident 

site), lane open time (when all lanes became open to traffic), and clear time (when the incident 

had been cleared and full departure capacity of the roadway section became available). Note that 

the actual start time of an incident might be some time before the incident is notified; however, 

unless the person involved in the incident could provide accurate information, there is 

uncertainty to determine when the incident actually started. Fortunately, due to the widely-used 

wireless communication, notification time is a good estimate of the actual start time of an 

incident, which is considered as the “start time” of an incident in 2009 WITS data (WSDOT, 

2008). Correspondingly, the incident duration consists of three typical intervals: arrival (the 

interval between the notification and arrival times), clearance (the interval between arrival and 
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all lanes open times), and recovery (the interval between all lanes open and clear). The arrival 

interval depends on and reflects the ability of the IR teams to respond to an incident. The 

clearance interval measures the performance of the IR teams to clear an incident with the 90-

minute goal (WSDOT, 2008). The recovery interval reflects the time for the traffic to operate at 

full departure capacity from the incident impact. As mentioned in Section 3.1.1, following 

WSDOT’s convention the period from the notification time to the clear time (labeled as 

Clearance Time in WITS data) of an incident is referred as the duration of the incident. 

All of the 2009 incident records in WITS were classified by month, with the incident 

duration shown in Table 4-8. The three months with the highest average incident durations were 

January, March, and May. Meanwhile, April, July, and June had the shortest average incident 

durations. On average, incidents last longer in winter than in summer. 

 
Table 4-8. Incident Duration (in minutes) by Month 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Clearance Time 

Mean 14.7 13.2 14.2 12.4 13.8 12.5 12.4 13.6 12.7 13.6 13.7 13.6
SD 27.0 21.7 28.3 23.9 32.7 22.9 20.9 25.9 21.3 23.8 22.8 27.7 

Median 7 7 7 6 7 6 6 6 6 6 7 6 
Max 407 360 570 866 1,020 567 377 505 370 402 300 542 

 Winter Quarter Spring Quarter Summer Quarter Autumn Quarter 

Clearance Time 

Mean 14 12.9 12.9 13.6 
SD 25.93 26.69 22.76 24.93 

Median 7 6 6 6 
Max 570 1,020 505 542 

Total 

Clearance Time 

Mean 13.3 
SD 25.09 

Median 6 
Max 1,020 

 
 

While there were fewer incidents on weekends than on weekdays, as mentioned in Section 

4.1, incidents on weekends had durations approximately 32 percent longer than on weekdays, as 

shown in Table 4-9 and Figure 4-8. This finding is consistent with the deployment of WSDOT’s 

IR teams. There are fewer IR teams scheduled on weekends; additionally, with the collaboration 

with WSP, on the weekends WSDOT is more likely to be called to more severe incidents, which 
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tend to last longer. To better evaluate the overall IR performance on the weekends compared to 

weekdays, both the WITS data by WSDOT’s IR teams and the CAD data by WSP need to be 

taken into consideration for future investigation.  

 

Table 4-9. Incident Duration (in minutes) by Day of Week 

 

Quarter Monday Tuesday Wednesday Thursday Friday Saturday Sunday Weekdays Weekends 

Q1 

Mean 15.23 13.07 12.62 12.94 13.99 15.39 19.17 13.57 17.13
SD 27.43 22.66 24.28 22.83 23.31 30.76 39.53 24.13 35.11 

Median 7 6 6 6 7 7 8 7 7 
Max 394 526 570 407 341 491 360 570 491 

Q2 

Mean 12.42 12.62 12.12 12.35 12.82 14.37 16.94 12.48 15.62 
SD 20.01 25.92 19.39 27.07 27.20 41.35 34.72 24.38 38.30 

Median 7 6 6 6 7 6 7 6 7 
Max 351 567 263 866 898 1.020 450 898 1,020 

Q3 

Mean 13.50 12.14 12.07 12.38 11.81 16.29 17.69 12.34 16.99 
SD 24.22 19.59 21.82 21.99 17.35 33.29 32.03 21.05 32.67 

Median 6 6 6 6 6 7 8 6 7 
Max 377 330 505 455 270 478 344 505 478 

Q4 

Mean 12.81 12.21 12.90 13.50 13.75 21.43 15.95 13.03 18.67 
SD 21.08 22.80 20.82 21.94 25.16 45.58 33.38 22.42 40.01 

Median 6 6 6 6 6 7 7 6 7 
Max 324 482 267 354 542 402 382 542 402 

Total 

Mean 13.45 12.50 12.39 12.76 13.02 16.48 17.47 12.81 16.96 
SD 23.28 22.86 21.57 23.65 23.52 37.87 34.99 22.99 36.50 

Median 7 6 6 6 6 7 7 6 7 
Max 394 567 570 866 898 1,020 450 898 1,020 

 
Figure 4-8. Average Incident Duration (in minutes) by Day of Week 
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Table 4-10 and Figure 4-9 show the incident duration for four periods: 6:00 to 9:00  AM, 

9:00  AM to 4:00  PM, 4:00  to 7:00  PM, and 7:00  PM to 6:00  AM the next day. It is obvious 

that the average incident duration for the midnight period was much longer than the other 

periods. The main reason for longer incident durations at night lies in that there is no regular IR 

team scheduled from 8 PM to 5: 30 AM of the next day, according to the current IR deployment 

plan. IR teams provide an on-call service during the nighttime so it takes longer for the IR driver 

to reach the incident scene. Also WSDOT’s IR teams are responding to more severe incidents at 

night, which results in a longer incident duration.  

 
Table 4-10. Incident Duration (in minutes) by Time of Day 

Incident Duration 06:00-09:00 09:00-16:00 16:00-19:00 19:00-6:00 

Q1 

Mean 12.90 12.46 15.52 36.07 
SD 21.87 21.45 24.86 67.66 

Median 6 7 8 10.5 
Max 407 570 326 526 

Q2 

Mean 10.86 12.07 13.24 32.02 
SD 15.71 19.40 21.63 91.63 

Median 5 6 7 8 
Max 219 403 567 1,020 

Q3 

Mean 10.55 12.37 12.99 29.17 
SD 15.87 19.63 21.23 59.57 

Median 5 6 7 8 
Max 230 505 455 478 

Q4 

Mean 13.08 12.25 14.26 36.29 
SD 22.21 20.11 24.62 68.82 

Median 6 6 8 10 
Max 381 382 482 542 

Total 

Mean 11.80 12.29 13.87 32.96 
SD 19.07 20.11 22.94 73.50 

Median 5 6 7 9 
Max 407 570 567 1,020 
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Figure 4-9. Average Incident Duration (in minutes) by Time of Day 
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Table 4-11 and Figure 4-10 display the durations of incidents occurring on the main 

corridors for each quarter and the whole year. It is clear that significant differences existed 

among different corridors. For instance, the duration of a US 2 incident was almost twice as long 

as the duration of an SR 167 incident (not shown in Table 4-11). The differences could be caused 

by various factors, e.g., the distance from the incident site and the response team, the length and 

traffic condition of corridors, or others. 

 

Table 4-11. Incident Duration (in minutes) by Route 

Quarter I-5 I-90 I-405 SR 167 SR 520 
NB SB EB WB NB SB NB SB EB WB 

Q1 

Mean 12.68 11.67 15.36 17.00 11.96 12.58 9.09 10.85 12.89 15.74 
SD 23.15 18.87 20.30 29.86 14.56 15.40 13.13 15.38 14.21 17.27 

Median 6 6 8 9 7 8 5 5 8 10 
Max 526 285 181 326 130 118 159 153 106 115 

Q2 

Mean 11.50 10.45 14.47 13.59 11.93 11.86 9.02 11.22 12.42 11.82 
SD 22.94 14.85 23.59 22.62 16.48 14.42 12.71 30.00 12.19 9.92 

Median 6 6 8 7 6 7 4 4.5 9 10 
Max 898 266 392 385 270 123 140 402 81 57 

Q3 

Mean 10.89 11.28 13.95 14.23 12.17 11.97 10.49 7.74 12.35 13.56 
SD 14.93 19.63 19.26 18.95 13.64 14.73 19.14 9.40 12.67 16.99 

Median 6 6 7 7 7 7 4 4 8 9 
Max 259 370 211 188 89 134 192 89 95 200 
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Q4 

Mean 11.49 11.92 12.91 13.55 11.93 11.89 12.78 10.24 13.76 16.38 
SD 20.18 20.56 20.13 17.14 17.66 13.58 36.22 15.78 12.76 21.35 

Median 6 6 7 8 6 7 5 5 9 9 
Max 542 382 321 125 183 101 482 143 70 227 

Total 

Mean 11.57 11.30 14.20 14.51 12.00 12.07 10.25 9.95 12.82 14.33 
SD 20.38 18.56 21.08 22.63 15.64 14.56 21.81 19.20 12.97 16.96 

Median 6 6 7.5 8 6 7 5 5 9 10 
Max 898 382 392 385 270 134 482 402 106 227 

 
 

 
Figure 4-10. Average Incident Duration (in minutes) by Route 
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Figure 4-11 shows that the average incident duration of a “total closure” or “all travel lanes 

closure” incident was far longer than the duration of any other kind of incident. “Total closure” 

and “all travel lanes closure” indicate more severe incidents and also represent more difficult 

scenarios for IR trucks trying to access the incident scene.  
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Figure 4-11. Average Incident Duration (in minutes) for by Primary Lane Closure 
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The average incident durations for different incident categories are summarized in Table 4-

12 and Figure 4-12. The top three categories associated with the longest incident duration were 

fatal collisions, injury collisions, and police activity. Generally speaking, a positive relationship 

exists between the severity of incidents and the incident duration. For example, collisions 

involving fatalities or injuries are the most severe and consequently require the longest time to 

process and clear. 

 
Table 4-12. Incident Duration (in minutes) by Incident Type 

Quarter Fatality 
Collision 

Injury 
Collision 

Non-Injury 
Collision 

Abandoned 
Vehicle 

Disabled 
Vehicles Debris Police 

Activity Other 

Q1 

Mean 188.11 56.70 31.50 5.91 11.13 10.50 57.81 13.89
SD 85.58 49.46 41.65 15.39 12.40 11.66 96.58 36.24 

Median 172 44 21 3 7 8 23 3 
Max 491 394 570 350 242 235 407 360 

Q2 

Mean 230.56 57.09 29.22 5.64 10.58 9.06 53.11 9.92 
SD 92.02 50.73 59.48 10.28 11.97 9.01 90.11 27.89 

Median 234.5 42 19 3 7 6 16 3 
Max 403 392 1,020 186 266 93 351 567 

Q3 

Mean 210.22 61.87 26.87 5.47 10.46 10.05 32.35 12.21 
SD 101.47 55.69 32.00 8.43 11.18 14.56 29.46 28.78 

Median 192 45 19 3 7 7 23 3 
Max 455 478 505 104 230 259 121 329 

Q4 

Mean 195.56 65.00 29.10 4.96 9.95 10.62 61.32 10.53 
SD 87.38 67.78 32.56 6.49 10.05 14.88 76.87 19.41 

Median 194 45 20 3 7 7 28 4 
Max 482 542 382 84 161 240 324 155 

Total Mean 203.62 60.22 29.18 5.50 10.53 9.96 51.80 11.60 
SD 92.65 56.56 42.72 10.66 11.44 12.63 78.61 28.83 
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Median 195 45 20 3 7 7 23 3 
Max 491 542 1,020 350 266 259 407 567 

 
 

 
Figure 4-12. Average Incident Duration (in minutes) by Incident Type 
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Statistical analysis of traffic incidents is essential for estimating incident-induced congestion 

and for emergency management. It can help for traffic operators better understand non-recurrent 

congestion caused by incidents, as it identifies the time periods and locations with a higher 

probability of accidents. Additionally, traffic operators can take advantage of statistical analysis 

results to develop effective countermeasures against incident-induced congestion. A pressing 

issue is to optimize the IR team configuration and schedule. With a better understanding of the 

roadway spots and time periods that have higher incident frequencies, traffic operators can better 

address these time periods and locations with improved patrol schedules and IR team 

configurations. 
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CHAPTER 5 RESEARCH APPROACH 

 

5.1 Review of the Phase I Approach 

IID refers to the extra travel time, in addition to the travel time of an incident-free scenario, 

which all incident-impacted drivers take to complete a certain length of trip. Therefore, in the 

Phase I study, Wang et al. (2008) calculated IID as WI WOIIID VD VD= − , where refers to the 

travel delay with an incident, and refers to the travel delay without an incident.  

WIVD

WOIVD

As mentioned earlier, a DQT-based approach was developed to quantify . To 

overcome the zero-vehicle length assumption in traditional DQT, the approach introduced two 

time offsets, as indicated in Figure 5-1, i.e., the travel time from the upstream loop station to the 

incident location ( ) and the travel time from the incident location to the downstream loop 

station (

WIVD

UIt

IDt ). Time offsets are essential for moving the arrival and departure curves to the 

incident location so that the area enclosed by the relocated arrival and departure curves can be 

calculated as IID. 
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Figure 5-1. DQT with Time Offsets 

 

To quantify , a Background Traffic Profile (BTP) matching process was designed, 

as shown in Figure 5-2. This process uses the vehicle arrival volume series under the incident 

scenario as the current pattern and searches the historical data for a match series under the 

incident-free scenario. Mean square error is used as the measure of similarity between two 

volume patterns. If the error of the most similar pattern is in an acceptable range, a match is 

identified. Then, the match pattern’s downstream departure volume series is used as the 

departure sequence of the current arrival pattern as if the incident had not happened. With the 

observed arrival curve and the virtual departure curve of the incident-free scenario, delay due to 

recurrent congestion ( ) can be estimated. If all the historical patterns are compared but 

none has an error in the acceptable range, the search fails to find a match, and cannot be 

computed for the current arrival pattern. 

WOIVD

VDWOI

WOIVD
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Figure 5-2. BTP Matching 

 
To verify the accuracy of this approach, a preliminary study was conducted to compare 

estimated delay with ground-truth delay extracted manually from surveillance video of vehicle 

movements. The incident used for this preliminary study was a lane-blocking incident that 

occurred at 10:42 AM on the Evergreen Point Floating Bridge of SR 520 on December 19, 2007. 

Because there is no entrance or exit on the three-mile-long bridge, travel times for all incident-

influenced vehicles were collected. The ground-truth total vehicle delay caused by this incident 

was compared with that estimated by the DQT-based approach. Surprisingly, the analysis results 

showed that the DQT estimated delay was very sensitive to the time offsets (travel times from 

the upstream counter location to the incident location and from the incident location to the 

downstream counter location at the moment when the incident occurred) used in calculations. 

The DQT-based approach may significantly overestimate or underestimate travel delays if 

inappropriate time offsets are applied. 

Because most existing traffic sensors cannot measure travel time or even speed, obtaining 

accurate time offsets was a very challenging issue. Another major problem with the Phase I 
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approach was finding the BTP match.  Therefore, the current pattern recognition approach as 

computationally expensive and could not perform at a satisfactory level. 

 

5.2 Algorithm Design for Quantifying IID 

This study proposed a modified DQT to address the time offset issue. Figure 5-3 shows an 

example of IID quantification in a modified queuing diagram, in which the horizontal axis is 

time and the vertical axis is the accumulated number of vehicles. In Figure 5-3, the arrival and 

departure flow curves are drawn at the moments they are measured, so that the horizontal 

distance between the two curves represents the travel time from the upstream loop station to the 

downstream one, and the vertical distance between two curves is the number of vehicles between 

the two loop stations. Thus the area enclosed by the upstream arrival and downstream departure 

curves is the total travel time for all the incident-affected vehicles on the freeway segment 

bounded by the two loop stations. 

 

 
Figure 5-3. Illustration of the Modified Queuing Diagram 
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Some previous studies also utilized similarly modified queuing diagrams for link travel 

time estimations (Woensel et al. 2008, Nam and Drew, 1996). However, IID cannot be directly 

retrieved from the modified queuing diagram because it only reflects the total travel time 

between two loop stations. Total travel time consists of three components: free-flow travel time, 

extra travel time caused by recurrent congestion (recurrent delay), and extra travel time caused 

by non-recurrent congestion (IID in this case). To estimate IID, both recurrent delay and free 

flow travel time need to be excluded from the observed total travel time. As mentioned above in 

the second challenge, however, this is not easy because given a specific arrival curve for an 

incident condition, the departure curve for the incident-free scenario remains unknown. If this 

unobservable departure curve can be virtually created, then it would be straightforward to 

estimate IID using the modified DQT. Therefore, the key is how to construct the departure curve 

under the incident-free scenario. 

When there is no incident, traffic is either under free flow conditions (with zero delay) or 

recurrently congested conditions (with predictable congestion locations and times). In either 

condition, the relationship between the upstream flow and the downstream flow should be 

relatively stable and predictable. Therefore, the research team used the observed upstream flow 

curve to predict the downstream flow curve of the incident-free scenario. The feasibility of this 

approach has been demonstrated in previous short-term traffic flow forecasting studies (Hobeika, 

and Kim, 1994; Abdulhai, et al., 1999). 

The modified DQT approach shown in Figure 5-3 needs three curves for IID estimation: 

the observed upstream arrival curve, observed downstream departure curve of the incident 

scenario, and the predicted downstream departure curve of the incident-free scenario. IID 

corresponds to the area enclosed by the observed downstream departure curve of the incident 
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scenario and the predicted downstream departure curve of the incident-free scenario. A 

mathematical expression of the total vehicle travel time with the incident impact, , and total 

vehicle travel time without the incident impact, , can be defined as in equations (5-1) and 

(5-2), respectively. 

WIVD

WOIVD

, ,

I I UI I ID

WI U i D i
i t i t t i t t

VD n dt n dt dt
= = − = +

⎛ ⎞
= −⎜⎜

⎝ ⎠
∫ ∫ ∫ ⎟⎟

, ⎟⎟

                                    (5-1) 

                               (5-2) ,

I I UI I ID

WOI
WOI U i D i

i t i t t i t t

VD n dt n dt dt
= = − = +

⎛ ⎞
= −⎜⎜

⎝ ⎠
∫ ∫ ∫

where  and  are the upstream and downstream vehicle counts during period i;  is the 

predicted downstream vehicle count during period i assuming no incident; 

,U in ,D in ,
WOI
D in

It  is the time when 

the incident occurred;  is the travel time from the upstream loop station to the incident 

location, and 

UIt

IDt  is the travel time from the incident location to the downstream loop station. 

Then IID can be calculated as the difference between  and : WIVD WOIVD

, ,

I I ID I ID

WOI
WI WOI D i D i

i t i t t i t t

IID VD VD n dt n dt dt
= = + = +

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫                  (5-3) 

,

I ID

WOI
D i

i t t

n
= +
∫ dt  corresponds to the predicted downstream curve, and  corresponds to 

the observed downstream curve. During the period , 

,

I ID

D i
i t t

n dt
= +
∫

IDt ,
WOI

D in n≈  because vehicles between the 

incident location and the downstream loop station are not influenced by the incident. Equation 

(5-3) can be rewritten as 

, , , ,

, ,

ID ID

I I ID I ID I I

I I I

t t
WOI WOI

D i D i D i D i
i t i t t i t t i t i t

WOI
D i D i

i t i t i t

IID n dt n dt n dt n dt dt

n dt n dt dt

= = + = + = =

= = =

⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫
                 (5-4) 
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Equation (5-4) indicates that the proposed approach successfully eliminates the need for 

time offsets (
 
and ) for IID estimation and thus significantly eases the data collection 

process. 

UIt IDt

 

5.3 Regression Techniques for Short-Term Traffic Flow Forecasting  

The downstream vehicle departure curve of the incident-free scenario is essential for IID 

estimation. However, it is not observable and must be estimated on the basis of historical data 

and current upstream arrivals. The Phase I approach utilized BTP matching to identify an 

incident-free matching series of arrival traffic at the same location and then used the 

corresponding downstream volume series to form the departure curve of the no-incident 

scenario. As mentioned earlier, BTP matching itself is a challenging research issue, and the mean 

square error approach employed in Phase I is computationally expensive. Therefore, the research 

team attempted to use a different approach to construct the departure curve of the incident-free 

scenario. 

All vehicles entering a freeway segment should be observed by the upstream loop station 

and then by the downstream loop station after traversing the segment. Depending on the traffic 

conditions and the length of the segment, it may take several time intervals (loop detector data 

reporting intervals are typically 20 to 60 seconds) for a vehicle to complete the journey. Given 

that the upstream and downstream traffic volumes are typically correlated, the research team was 

inclined to use regression techniques for this short-term traffic flow forecasting problem. In this 

research, two forecasting techniques were investigated and compared. 
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5.3.1 Lagged Regression and Ridge Regression 

Lagged regression is a time series analysis technique. It investigates the correlations 

between the downstream flow count series from time step i and the upstream flow count series 

from time steps i-r. Here, r is the time lag between two series that takes values of r=1, 2, 3, … 

and evaluates which r value corresponds to a correlation stronger than a user-specified level. The 

lagged regression model used for this study is shown in Equation (5-5). 

1

0

kl

t r t r
r l

y a x tβ ω−
=

= + +∑                                                                 (5-5) 

where  represents the downstream flow count series; ty t rx −  denotes the upstream flow count 

series with a time shift of r intervals from the downstream series; 0β  is the constant;  to  are 

the lags at which correlations between inputs and outputs are above the correlation threshold; and 

1l kl

tω  is white noise. 

Ridge regression is a nonparametric regression technique. Unlike multiple linear 

regression, it uses goodness of prediction as the parameter estimation criterion rather than 

goodness of fit. As shown in Equation (5-6), ridge regression shares the same mathematical 

expression as multiple linear regression. 

0
1

k

i ij
j

y x jβ β ε
=

= + +∑                                                                 (5-6) 

An important distinction between ridge regression and multiple linear regression is that 

ridge regression applies a different procedure for model parameter estimation. Equations (5-7) 

through (5-11) show the parameter estimation procedure with ridge regression. Note that a 

penalty term, λ , called the smoothing parameter, is added to constrain the parameters

1 2, , , kβ β L β  in Equation (5-7). 
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For a specific λ , minimizing Equation (5-7) is equivalent to minimizing 

2

0
1 1

n k

i ij
i j

y xβ β
= =

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
∑ ∑ j subject to 2

1

k

j
j

sβ
=

≤∑                               (5-8) 

where s is the constraint to 1 2, , , kβ β βL , which plays a similar role as λ . Solving Equation (5-8) 

yields 

1ˆ ( )T Tx x D x Yβ λ −= +                                                    (5-9) 

where D is an identity matrix. For smoothing parameter selection, cross validation techniques are 

applied: a sample of data is partitioned into two complementary datasets, one for model training 

and the other for validation. Then values of ordinary cross-validation (OCV) and generalized 

cross-validation (GCV) are calculated by using Equations (5-10) and (5-11), respectively: 

2

2
1

ˆ(1
(1 )

n
i i

i ii

)y yOCV
n S
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−
=

−∑                                                      (5-10) 
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n tr S n

λ

λ=

−
=

−
∑                                              (5-11) 

where . The 1( )TS x x D xλ λ −= + T λ value with the lowest OCV or GCV score will be chosen. In 

this way, cross-validation essentially compares different models and selects the one with the best 

predictions on the basis of the training data set. 

As illustrated above, in comparison to multiple linear regression, ridge regression skips 

the variable selection process but applies a smoothing parameter to constrain all parameters. The 

estimation goal is to minimize cross validation scores (OCV and GCV) rather than the sum of the 

squared residuals. Therefore, ridge regression can accommodate more input variables. In this 

study, k was chosen to be 15, meaning that the downstream volume count was estimated by the 

upstream volume counts over the past 15 intervals, or 5 minutes. The research team chose 5 
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minutes because in IID quantification applications, the distance between upstream and 

downstream loop stations usually ranges from 0.5 to 1.5 miles. Even in congested periods (e.g., 

vehicles traveling at 20 mph), travel time over such a distance would still be under 5 minutes, 

and the regression model can capture the relationship between upstream and downstream flows. 

 

5.3.2 Prediction Accuracy Evaluation 

Since the downstream departure volume prediction under the incident-free scenario is a 

key component in the proposed methodology framework, the prediction accuracies for the two 

proposed short-term traffic forecasting techniques had to be compared to find the better one for 

IID estimates. The measures used for the comparison are Mean Squared Error (MSE) and Index 

of Agreement (IA). 

Mean Squared Error (MSE) is widely used as a measure for quantifying the difference 

between the estimated value and the observed value. It is defined as 

2

1

1 ˆ(
n

i i
i

)MSE y y
n =

= −∑                                                          (5-12) 

where n is the number of observations,

 

is the estimated value, and  is the observed value. 

Despite its widespread use, MSE has been criticized because its value is highly related to the 

magnitude of the observed values. One remedy for this problem would be to take the mean of 

observed values into consideration. Index of Agreement (IA) was proposed by Willmott (1981) 

as a quantitative indication of the quality of model prediction. It is defined as 

ˆiy iy

2

1

2

1

ˆ( )
1

ˆ( )

n

i i
i

n

i i
i

y y
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y y y y

=

=
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= −

− + −

∑

∑
                                                  (5-13) 
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where n, , and  are as defined in Equation (5-12), and ˆiy iy y is the mean of observed values. IA 

is dimensionless and ranges between 0 and 1. When IA=1, perfect agreement is achieved 

between the estimated and observed values. 

Prediction accuracy tests were conducted for two locations, one on I-5 northbound 

between mileposts 157.92 (upstream) and 158.92 (downstream), and the other on SR 520 

westbound between mileposts 1.58 (downstream) and 4.10 (upstream). For each location, an 

interval free of incidents was randomly chosen, and the corresponding upstream and downstream 

20-second loop volume data retrieved from the database server at the STAR Lab were employed 

for parameter estimation using both regression techniques. 

The calibrated model for each location was then applied to three testing data sets, 

representing three different scenarios: (1) the same location on another date, (2) the same date at 

another location, and (3) at another location on a different date. All the locations and dates were 

chosen randomly to test the calibrated model’s spatial and temporal transferability, i.e., how well 

it can be applied to different dates or locations. Detailed information about the training data, test 

data, and test results are summarized in Table 5-1. 

 

Table 5-1. Prediction Accuracy Test Results 

Training Data Testing Scenario Prediction Method 

Time 
Location 

Time 
Location Ridge 

Regression 
Lagged 

Regression 
Upstream 
Milepost 

Downstream 
Milepost 

Upstream 
Milepost 

Downstream 
Milepost IA MSE IA MSE 

10/15/2009 I-5 
157.92 

I-5 
158.92 

11/11/2009 157.92 158.92 0.64 38.2 0.38 65.4 

10/15/2009 139.69 140.64 0.74 38.8 0.38 79.2 

11/11/2009 189.98 190.9 0.77 39.7 0.6 65.7 

11/18/2009 SR 520 
4.1 

SR 520 
1.58 

10/14/2009 4.1 1.58 0.52 15.4 0.27 19 

11/18/2009 7.98 6.01 0.47 43.8 0.47 43.7 

10/14/2009 7.98 6.01 0.44 37.6 0.44 37.7 
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For the I-5 location, ridge regression performed better than lagged regression in terms of 

prediction accuracy. IA for ridge regression at the I-5 location ranged from 0.64 to 0.77, meaning 

that the predicted values agreed 64 percent to 77 percent with the observed values. MSE values 

for ridge regression at the I-5 location were half those for lagged regression. For the SR 520 

location, ridge regression also outperformed lagged regression when applied to a different date, 

with a higher IA and a lower MSE. In the other two scenarios, ridge regression and lagged 

regression both had lower prediction accuracies at approximately the same level. IA values for 

these two scenarios were less than 50 percent. One reason might be that the training data set for 

SR 520 case was from both ends of a floating bridge, where the traffic characteristics were 

different from those at the location for training scenarios 2 and 3, which was a regular freeway 

section. 

From this comparison, the researchers concluded that ridge regression had a better or 

equivalent prediction accuracy than lagged regression at these two test sites. This result would 

also be found at other locations because the parameter estimation for ridge regression is designed 

for better prediction: it uses cross-validation for smoothing parameter selection, a technique to 

evaluate how well the predictions from the trained model can be generalized to other 

independent data sets. 

Additionally, ridge regression can accommodate more variations in traffic than lagged 

regression. Lagged regression calculates cross-correlation function to find the most correlated 

previous time steps. Once the model is formulated, only time steps with correlations higher than 

the threshold will be kept in the model. Ridge regression keeps all the upstream volumes from 
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the previous 15 time steps, so it captures more of the traffic dynamics that occurred in the last 

five minutes. 

Last but not least, in comparison to lagged regression, ridge regression is more flexible in 

terms of choosing upstream and downstream loop stations. The most correlated time steps picked 

up by lagged regression are strongly influenced by the distance between the upstream and 

downstream loop stations. When traffic flow stays stable, vehicles will take a certain time to 

travel from upstream to downstream locations. This travel time is mainly determined by the 

distance between the upstream and downstream loop stations. However, when the trained model 

is applied to another upstream/downstream pair along a specific corridor, with a longer or shorter 

distance than that in the training data set, the trained model will fail to perform well. Ridge 

regression is a nonparametric regression technique, which does not rely on specific parameters 

but shrinks the input data to best fit the relationship between input and output. Therefore, within 

the scope of this study the research team chose ridge regression over lagged regression for 

methodology implementation. 
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5.4 Algorithm Implementation 

The IID estimation approach developed in this study is straightforward. However, it is very 

challenging to perform the calculations manually. Therefore, the entire procedure was 

implemented in an online system to automate the calculations. Implementation consisted of three 

components: incident and loop data cleansing, model training (parameter estimation), and IID 

calculation. 

Both incident duration and incident location are indispensable information for IID 

estimation. However, applying the proposed approach to inaccurate data would generate wildly 

biased IID estimates. Because of communication problems and loop malfunctions, some loop 

stations could not produce any useful data, and in the WITS database, the information for some 

incidents was either incomplete or missing. Therefore, incidents without complete, good quality 

data were excluded from IID calculations. 

When traffic flow conditions change, the upstream/downstream relationship will change 

correspondingly. Therefore, it is desirable to develop individual prediction models for different 

locations and flow conditions to ensure downstream flow prediction accuracy. The research team 

applied ridge regression to different traffic flow conditions from location to location over 

different time periods. They identified traffic flow levels and traffic volume trends as two main 

factors that influence prediction accuracy. They also found that almost all the locations 

experienced four phases of traffic dynamics. These four phases are based on traffic flow levels 

and volume trends and are as follows:  

1. Free flow phase: low volume and high speed, usually from midnight to early morning  

2. Travel growing phase: the transition phase from free flow to morning peak, with 

consistently increasing volume until morning peak volume is reached  
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3. Daytime phase: even though it might experience morning or afternoon peak, traffic 

demand remains at a high level over a long period during the day  

4. Travel decreasing phase: the transition phase from daytime flow to free flow phase, 

with consistently decreasing volumes. An example of traffic flow variation in one day free of 

incidents on I-5 northbound between mileposts 158 and 160 is shown in Figure 5-4. There were 

five lanes in the section, and both upstream and downstream volumes were aggregated into 5-

minute intervals. In Figure 5-4, the free flow, travel growing, daytime, and travel decreasing 

phases roughly correspond to midnight to 4:00 AM, 4:00 to 7:00 AM, 7:00 AM to 6:00 PM, and 

6:00 PM to midnight. The research team went through 22 locations along main corridors 

including I-5, I-405, I-90, and SR520. For each location, four traffic phases within one day were 

identified. For each phase, a specific prediction model was calibrated. 
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Figure 5-4. Typical Traffic Variations over a Day 

 

While traffic phases defined different flow levels and volume trends, four other factors 

were used to represent flow direction and location: route, milepost, direction, and number of 
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lanes. Once a new combination of the factors was determined, a new set of model parameters 

needed to be estimated. This was straightforward to do for freeway segments with traffic 

counters. In this study, 88 different models were estimated, representing a variety of scenarios. 

Once an incident has been identified, its duration and location information can be 

retrieved. On the basis of that information, a corresponding calibrated model and 

upstream/downstream 20-second volume data are obtained. With the calibrated model and 

upstream volumes, predicted downstream volumes can generated instantly. The predicted 

downstream volumes can then be used with the observed downstream volumes in the modified 

DQT for IID estimation. 

The procedure described above is summarized in Figure 5-5. After the IID is calculated 

for the incident, the result, together with the incident description information, is stored in a 

Microsoft SQL database hosted in a Dell Edge server operating Windows Server 2008 at the Star 

Lab. All of the IID results are integrated into the database, whose access and query are supported 

by a regional map-based online platform called Digital Roadway Interactive Visualization and 

Evaluation Network (DRIVE Net) (Ma et al., 2010). The current implementation is on Google 

Maps. However, it should be fairly easy to transplant DRIVE Net to other digital map systems. 
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Figure 5-5. Implementation Process 

 
Through the regional map-based user interface, practitioners can configure queries on the 

incident database by using the tools provided by DRIVE Net. For example, a user can specify the 

time period (note: only 2009 incident data have been loaded at this time) and routes to define the 

kinds of incidents to show. All incidents that fit the query criteria will be marked by a balloon 

symbol on the regional map. If the user is interested to know details of an incident, he or she can 

click the corresponding balloon and see the fundamental data of the incident in a callout textbox. 

To calculate the IID, users can click on a “Calculate Delay” button on the bottom of the callout. 

Figure 5-6 shows a snapshot of an example incident on I-5. 
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Figure 5-6. Snapshot of the Online System 
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CHAPTER 6 RESULTS AND DISCUSSION 

 

6.1 Case Studies for Algorithm Verification 

To validate the accuracy of the IID algorithm, IID estimates calculated by the algorithm were 

compared to ground-truth IIDs. However, data regarding vehicle travel delay are not easy to 

obtain. Therefore, surveillance video camera-captured traffic data were chosen as a means for 

extracting ground-truth travel delays for validating the algorithm results in this study. 

The Phase I methodology used a simulation-based approach for algorithm validation. 

VISSIM simulation software was used to simulate 18 incidents occurring on eastbound SR 520 

along the Evergreen Point Floating Bridge in January 2003. Although the simulations produced 

similar results to those calculated with the Phase I methodology, the use of simulation software 

has several disadvantages, including the constraints of the built-in driver behavior models and a 

lack of data and methodology for thorough calibration of a microscopic simulation model.  

Therefore, validation with field observed travel data is highly desirable. The research 

team recorded a large amount of video data and eventually fully captured two incidents under the 

monitoring range of the surveillance video cameras. The first recorded incident occurred on 

January 26, 2010, at 7:53 AM on I-5 near Boeing Field in Seattle, Washington. The second 

recorded incident occurred on April 9, 2010, at 4:43 PM on the SR 520 Bridge. The ground-truth 

travel delay associated with each incident was manually determined. 

 

6.1.1 Video Validation Methodology 

Test sites for the video validation were selected on the basis of the criteria described in Chapter 

3. Each test site consisted of a freeway segment with one camera at the upstream end of the 

segment and another camera at the downstream end. Each camera’s field of view covered the 
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corresponding inductance loop station so that the volume data extracted from the video footage 

were ground-truth data at the loop detector location. In order for the delay from an incident to be 

calculated properly, the incident and the queue induced by the incident had to be located between 

the two cameras. 

The two video streams for each chosen study site were recorded continuously until an 

incident had been captured. A Really Simple Syndication (RSS) Web feed from WSDOT was 

used to determine when an incident had occurred at the study site. The RSS feed provides 

information for all incidents occurring within the Northwest Region of WSDOT. Data included 

in the RSS feed are incident time, location, and a brief description. The recording was then 

analyzed to determine whether the incident had been captured and if IID could be calculated 

from the recording. 

To determine IID from the video recording, a baseline travel time for the segment was 

calculated. Timestamps for a sample of eight vehicles were recorded at both the upstream and 

downstream cameras minutes before the occurrence of the incident. The difference between the 

two time stamps of a vehicle provided the travel time for the vehicle to traverse the segment right 

before the incident. The travel times for all the eight vehicles was averaged to determine the 

mean travel time of the segment without the incident. 

The duration of the incident was then broken into 30-second intervals. For each interval, 

a single vehicle with visually identifiable features was tracked to determine its travel time 

through the segment. This provided a representative travel time for all vehicles within the 

interval. By taking the difference of the travel time for the given interval and the travel time 

without the incident and multiplying it by the total number of vehicles within the given interval, 

the cumulative delay for all vehicles in the interval was determined. By adding the delay for each 

49 



30-second interval throughout the duration of the incident, the total incident induced delay was 

calculated.  

In some intervals, a featured vehicle may not have been available for easy manual 

tracking because of either poor video quality or the absence of featured vehicles. While a vehicle 

count could be determined for these intervals, a representative travel time could not be obtained. 

In this case, the average travel time of the adjacent time intervals was used to calculate the IID of 

the interval. 

 

6.1.2 Case Study 1: I-5 Boeing Field 

The first recorded incident used to calculate delay occurred on January 26, 2010, at 7:53 AM on 

I-5 near Boeing Field in Seattle, Washington, in the northbound direction, as shown in Figure 6-

1. The southern camera was located at the Albro Place overpass (MP 159.05), and the northern 

camera was located at mid-Boeing Field (MP 158.05). This gave a segment length of one mile. 

Calculation for this incident yielded an IID of 9,332 vehicle-minutes. The screen shots in Figures 

6-2 and 6-3 provide examples of the video used for ground-truth IID extraction. 
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Figure 6-1. I-5 Northbound Boeing Field Camera Locations 

 

 

Figure 6-2. Jan. 26, 2010, Downstream of Incident 
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Figure 6-3. Jan. 26, 2010, Upstream of Incident 

 

6.1.3 Case Study 2: SR 520 Bridge 

The second recorded incident used in the IID algorithm validation occurred on April 9, 2010, at 

4:43 PM on the SR 520 Bridge in the westbound direction. This study site is illustrated in Figure 

6-4. The cameras used at this location were at MP 1.58 at the Lake Washington Blvd exit and 

MP 4.1 at the 76th Ave NE overpass (see Figures 6-5 and 6-6 for a snapshot at each location). 

The methodology for verification was slightly altered for this incident. Because of the 

nature of the study segment, queues forming as a result of incidents near the downstream camera 

exceeded the video extents of the upstream camera. After the point in time when the queue had 

passed the upstream camera, delay estimations were no longer accurate, as vehicles had already 

experienced a significant amount of delay before entering the view of the camera. The 

quantification of this incident was cut short, ending at the point in time when the queue reached 

the upstream camera. This shortening of the validation methodology did not affect its accuracy, 

as the time adjustment was considered in the calculation methodology as well. 
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Figure 6-4. SR 520 Bridge Camera Locations 

 

 

Figure 6-5. Apr. 9, 2010, Downstream of Incident 
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Figure 6-6. Apr. 9, 2010, Upstream of Incident 

 

6.2 Statistical Analysis on IID 

The improved DQT-based IID estimation algorithm was coded in JAVA as a module of the 

DRIVENet system. Currently, only the 2009 WITS data set has been loaded and is ready for 

users to access and query. There are 2,676 incidents with complete incident records and good-

quality loop data in the databases and all of them were processed. Of the total incidents 

processed, 2,028 (75.8 percent) incidents were found to have caused travel delays. In the 

following sections, these 2, 028 incidents are summarized based on primary lane closure type 

and incident type; then the relationship between the incident duration time and calculated IID is 

analyzed in detail; finally, the difference of IID on weekdays and weekends is investigated. 
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6.2.1 Summarization of IID estimation results  

IID estimation results for those 2, 028 incidents are summarized in Tables 6-1 and 6-2.  In each 

table, the descriptive statistics, including frequency, mean, standard deviation (SD), median, and 

maximum, are shown for different categories.  

Table 6-1 shows aggregated IID statistics by primary lane closure type. On the basis of 

the mean IIDs of lane closure types, one can tell that multiple lane closures are the most severe, 

followed by HOV lane closures, and then single lane closures. Shoulder/median closures are the 

least severe. Since the mean IID for shoulder/median closure is much lower than that for any 

other primary lane closure types, closing the shoulder or median for necessary incident 

investigations is a good incident management strategy for mitigating incidents’ impacts to traffic.  

 
Table 6-1. Statistics of Incident-Induced Delays (in vehicle-hours) 

Primary lane closure type Frequency Mean SD Median Max 
HOV 69 169 15 628 4685 

Multiple Lane 60 609 26 2871 22045
Shoulder/Median 1642 17 2 68 1667 

Single Lane 253 75 11 271 3094 
 
Table 6-2 presents IIDs grouped by incident type. From Table 6-2, it can be found that 

collision-related incidents, especially incidents with injury, were associated with longer delay 

than other types. Note that in both Table 6-1 and Table 6-2, the mean values are significantly 

smaller than the corresponding median values. The reason lies in that of all the 2,028 incidents 

associated with a non-zero IID, there are 68.2 percent of them (1,384 incidents) have an IID of 

less than 10 vehicle-hours, implying a non-symmetrical distribution of IIDs. In this case the 

median value provides more statistically meaningful information than the mean value. For 

example in Table 6-2, for incident type “Disabled Vehicle”, half of the sampled incidents were 
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associated with delay longer than 90 vehicle-hours, although the mean value for this category is 

only 20 vehicle hours. 

 
Table 6-2. Statistics of Incident-Induced Delays (in vehicle-hours) 

Incident type Frequency Mean SD Median Max 
Abandoned Vehicle 359 7 1 39 454 

Debris Blocking Traffic 193 21 5 56 591 
Disabled Vehicle 1218 20 2 90 1993 
Injury Collision 38 544 186 1030 4685 

Non-Injury Collision 100 168 37 361 2460 
 
 

6.2.2 Relationship between the incident duration time and calculated IID  

In terms of the incident duration of these 2,028 incidents, 80.9 percent (1,640 incidents) of them 

lasted less than 15 minutes, 18.9 percent (384 incidents) of them stayed between 15 and 90 

minutes, and only 0.2 percent (4 incidents) of them had duration of over 90 minutes. Figures 6-7 

and 6-8 show the percentage of different IID significance levels (on a log scale, in the unit of 

vehicle-hour) for those with durations of less than 15 minutes and between 15 and 90 minutes 

respectively. By comparing Figure 6-7 and Figure 6-8, one can find that the IID tends to increase 

when the duration increases. On one hand, the percentage of IID greater than 100 vehicle-hour 

grows from 0 percent to 31 percent and the percentage of IID between 10 and 100 vehicle-hour 

grows from 15 percent to 46 percent when the incident duration changes from less than 15 

minutes to between 15 and 90 minutes; on the other hand, the percentage of IID stayed for less 

than 10 vehicle-hour decreases when the duration increases. 

 

56 



 

0‐1
41%

1‐10
44%

10‐100
15%

>100
0%

Figure 6-7. IID significance levels for incidents lasting less than 15 minutes 
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Figure 6-8. IID significance levels for incidents lasting between 15 and 90 minutes 

Table 6-3 shows the information of the four incidents with duration of over 90 minutes. 

All these four incidents are related to lane closure. Two of them (the first and the fourth) are 

injury collisions; the third one is a non-injury collision; and the incident type of the second one is 

not available in the WITS database. 
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Table 6-3. Duration over-90-minute incidents within the 2,028 incidents 

Date Notification 
Time 

Duration 
(minute) Location Description IID 

(vehicle-hour) 

5/13/2009 2:00 PM 124 I5 MP:151.2 Injury Collision, 
HOV lane closed 4,685 

7/29/2009 1:13 PM 215 I5 MP:151.8 Multiple Lane closed 22,045 

9/4/2009 12:14 PM 96 I5 MP:146.8 Non-injury Collision, 
Single Lane closed 945 

12/21/2009 7:23 AM 381 I5 MP:142 Injury Collision, 
Single Lane closed 3,094 

 

Figure 6-9 uses a log scale on the IID-axis to show the frequency of different incident 

types. From Figure 6-9, one can find: 

• The incident types with IID less than 10 vehicle-hours are mostly disabled 

vehicles and abandoned vehicles.  

• The IID is usually higher than 10 vehicle-hours when collision-related incident 

types (injury collision and non-injury collision) happen. 
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The scatter plot in Figure 6-10 (a) shows the relationship between the incident duration 

time and calculated IID for these 2,028 incidents. Figure 6-10 (b) is an enlarged chart for the 

green box in Figure 6-10 (a) which displays IIDs caused by incidents lasted less than 90 minutes. 

From Figure 6-10, one can find that the calculated IID tends to increase with the incident 

duration time. However, this may not always be the case, since IID is also affected by many 

other factors, such as the traffic demand on the freeway and lane closure type. In Figure 6-10, a 

linear model was calibrated to establish a best-fit relationship between the incident duration time 

and IID. The positive slope of 8.167 indicates that IID increases as incident duration increases. 

However, the square of the correlation coefficient is only 0.377, indicating a relatively weak 

correlation between the two variables. That indicates that IID is not a simple linear function of 

incident duration. The IID can be affected by incident duration time, as well as other factors, 

such as traffic volume when the incident happens and the roadway configuration.  

Additionally, 33.7 percent of the WSDOT IR team responded incidents are associated 

with IIDs of less than one vehicle-hour. A closer look at those incidents revealed that most of 

them had incident duration of less than 10 minutes and occurred at a period with relatively low 

traffic volume. Very likely, the reduced capacities resulting from these incidents were still higher 

than the demands, and hence these incidents did not result in any significant travel delays in 

relation to the incident-free scenarios.  
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Figure 6-10. The Relationship between Incident Duration Time and Calculated IID - Linear Scale 

 

6.2.3 Investigation on the IID difference between weekdays and weekends 

The magnitude of IID is dependent on the effectiveness of incident response, as well as the 

severity of the incidents and the traffic conditions. In order to investigate in these impact factors, 
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we need to compare IIDs on weekdays and those on weekends of the similar incident types. A 

case study on I-5 was conducted. In this case study, all the I-5 incidents with IID calculated were 

categorized according to the incident types.  

For each incident type, corresponding incidents were further divided into two groups, one 

for weekday incidents and the other for weekend incidents. For each group, a box plot was drawn 

to show the lower quartile, the median, and the upper quartile. As shown in Figure 6-11, the gold 

and green box plots were used to summarize weekday and weekend IIDs, respectively. In each 

box plot, the bottom and top of the box represent the 25th and 75th percentiles (the lower and 

upper quartiles, respectively), and the band near the middle of the box shows the 50th percentile 

(the median). 

In total, there were 2,355 incidents on I-5 in 2009 had IIDs calculated. Of these incidents, 

429 (18.2 percent) were due to Abandoned Vehicles, 225 (9.6 percent) were due to Debris, 1438 

(61.1 percent) were due to Disabled vehicles, 38 (1.6 percent) were due to Injury Collisions, 129 

(5.5) were due to Non- Injury Collisions, and 96 (4.1 percent) were due to other reasons.  

For Abandoned Vehicle, the midspread (range from 25th to 75th percentile) for weekday 

and weekend were similar. For Debris, Disabled, Non- Injury Collisions, and other reasons, 

weekend midspreads were all bigger than weekday midspreads. Midspread is a robust statistic 

measuring the statistical dispersion, therefore in general it can be concluded that there are more 

variations in weekend IIDs than weekday IIDs. Additionally, excluding the Injury Collision 

category (with a relatively small sample size), for all the other incident types, median and 75th 

percentile IID values were higher on weekends than weekdays. A general indication revealed 

from this case study is that weekend incident response needs to be enhanced for busy corridors 
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like I-5. Enhancement may include improving the procedure for IR or increasing IR resources 

during weekend days. 

Because of the variations of traffic flow dynamics, roadway geometry, and traffic 

regulations over time and locations, a calibrated model may not transfer well to another location 

and time period. The new approach developed in this study performed fairly well in both spatial 

and temporal transferability tests (details of these tests can be found in Table 5-1).  This implies 

that the new IID estimation approach is reasonably robust to location and time changes. To 

achieve the best IID estimation accuracy, however, location-specific models are preferable. 

Given the ease of using the online implementation of the proposed approach, parameter 

estimation for each location should be convenient and straightforward for large-scale network 

applications.  
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Figure 6-11. I-5 Case Study: IID on Weekdays and Weekends by Incident Types 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

Incidents are one of the major causes of urban freeway congestion. IID quantification helps 

traffic practitioners and policy makers better evaluate their investment in congestion mitigation 

measures and develop more effective IR strategies. 

In this study, a new approach based on the modified deterministic queuing diagram and 

short-term traffic flow forecasting was developed for quantifying IID on freeways. The proposed 

approach utilizes only traffic volume data for estimating IID, making it appealing for most 

transportation agencies because of its simplicity in implementation. The key to enabling such an 

approach is to accurately predict the unobservable downstream volumes under the incident-free 

scenario. Two regression techniques, lagged regression and ridge regression, were investigated in 

this study for downstream volume prediction. Their prediction accuracies were evaluated and 

compared. Ridge regression was chosen for algorithm implementation because it produced better 

prediction results. The downstream volumes predicted by the ridge regression model were then 

combined with observed downstream volumes in the modified queuing diagram for IID 

estimation. To facilitate the calculations, the proposed algorithm was implemented online on a 

regional map-based system. 

Results from the proposed approach were verified by using video-captured ground truth 

data at two locations. The percentage of errors using the proposed approach was under 5.6 

percent, indicating that the new approach is able to produce fairly accurate IID estimates. To test 

the online system of the proposed approach, IIDs were estimated for 2,676 incidents that 

occurred on the Washington state freeways in 2009 and 2,028 incidents were found associated 

with IID. This test demonstrated that the proposed approach is easy to use, and the computational 
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process took only a very short moment to complete. The proposed algorithm is also flexible in 

terms of input data aggregation level and time period for the IID analysis. Its online 

implementation system provides a great platform for a variety of possible future applications. 

Statistical analysis was conducted on the frequency of incident occurrence and incident 

duration. Incident frequency peaks in June, July, and August. More incidents were responded by 

the WSDOT IR team on weekdays, while those responded incidents occurred during weekend 

days have longer average incident durations. Over 50 percent of incidents are related to disabled 

vehicles. Collision-related incidents have longer durations, especially for injury accidents. At 

night, it takes more than twice as long to clear an incident as it does during the day. These 

findings reflect the current deployment of the WSDOT’s IR teams. The weekend incidents takes 

longer to clear because the WSDOT’s IR teams are on call to address only severe incidents on 

weekends. Thus the recorded weekend incidents have much longer average duration than those 

responded during weekdays.  The similar relationship was also found in the analysis on incident 

occurrence and incidents duration when comparing daytime and nighttime. In terms of incident 

type, disabled vehicles, abandoned vehicles, and debris were the most frequently occurring 

incident categories, indicating that an efficient and capable towing task power is necessary to 

ensure effective IR. In terms of incident duration, collision related incidents were generally 

associated with longer duration.  

Statistical analysis was also conducted on the 2,028 incidents with non-zero IID 

according to the calculation results. Some findings include: 1) shoulder/median closure 

corresponds to a much lower median IID compared to other types of lane closure (Table 6-1); 2) 

88.3 percent of incidents with IID less than 10 vehicle-hours were due to disabled vehicles or 

abandoned vehicles, and 61.7 percent of incidents with IID longer than 10 vehicle-hours were 
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due to non-injury collision or injury collision; 3) longer incident duration tends to result in a 

longer IID. Although they are not highly correlated, a trend still exists showing that longer 

incident duration tends to result in a longer delay; and 4) weekend incident response needs to be 

enhanced for busy corridors like I-5.   

 In summary, this research proposed a new algorithm that only requires loop volume as 

input to yield reasonably accurate IID estimates. The wide availability of volume data definitely 

extends the scope of its application. The algorithm has been verified by two real-world incidents 

whose ground-truth IIDs were extracted from the upstream and downstream video sequences 

captured by the traffic surveillance cameras. Such ground-truth data based verifications were 

rarely done in previous studies. In both cases, the new algorithm estimated IIDs matched the 

ground-truth IIDs reasonably well. The algorithm for IID quantification provided great potential 

for future incident analysis and IR effectiveness evaluations. If an hourly value is applied, IID 

cost can be easily calculated. However, there are two issues must be properly addressed before 

applying this algorithm: 

(1) Loop data quality. This algorithm relies on loop volume as input and bad quality of 

loop data would certainly deteriorate the accuracy of IID estimates; and  

(2) Location specific calibration. Road and driver characteristics at each location may not 

be similar to the study sites used in this study and hence affect the accuracy of the short-

term flow forecasts at the downstream sensor locations for the incident-free scenarios. It 

is highly desirable to ensure that model parameters are properly suitable to apply at each 

application site.  

 Although this research well sampled over the main corridors in Puget Sound region, 

attained 88 location-specific models for IID calculation, cleared loop data errors, and tested the 
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temporal-spatial transferability of those models. In the future these efforts need to be expanded 

and strengthened for large-scale applications in the entire state of Washington. 

 

7.2 Recommendations for Future Study 

To facilitate future research, the following recommendations are made: 

• Accurately predicting the downstream volume sequence under the incident-free 

scenario is critical for quantifying IID in this new approach. Since geometric factors, 

in addition to volume levels, are highly relevant to traffic movements, prediction 

models that take location-specific variables into account are likely to yield better 

results and should be investigated in future research. Further study should address this 

and develop more general models capable of taking location-specific characteristics 

into account for improved IID estimates.  

• Traffic detectors may subject to various errors. A general approach that can 

automatically check the quality of volume data and correct data errors, if possible, is 

highly desirable. Improvement of data quality in the incident database will help 

further enhance the IID estimation. 

• Incidents with duration longer than 15 minutes are likely to associate with higher 

delay. Collisions tend to have longer duration, especially those with person injuries. 

• The new approach relies on volumes upstream and downstream of the incident 

location for IID calculation; therefore, once the locations of ramps have been defined, 

IID can be calculated correspondingly. Unfortunately, ramp milepost information is 

currently missing in the loop detector database, so the algorithm cannot determine 

whether ramp volumes are affecting upstream or downstream volumes. In the future, 
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the milepost locations for on- and off-ramps should be added to the loop database so 

that the proposed algorithm can incorporate ramp volumes.  

• With IID estimated by this new algorithm, travel delay cost induced by an incident 

can be derived with value of time information. This enables the potential for 

economic analysis on incident cost and IR resource allocations. Such an analysis shall 

be able to answer important questions for congestion management, for example, 

given the characteristics of traffic and incident distributions on a corridor, what is the 

best IR team configuration and work schedule? Accurately quantifying travel delays 

are also essential for evaluating the benefit of infrastructure investments. 
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